(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
dbl(0') → 0'
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0', cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
dbl(0') → 0'
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0', cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
Types:
dbl :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sel :: 0':s → nil:cons → 0':s
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
dbl,
dbls,
sel,
indx,
fromThey will be analysed ascendingly in the following order:
dbl < dbls
sel < indx
(6) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
Types:
dbl :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sel :: 0':s → nil:cons → 0':s
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
dbl, dbls, sel, indx, from
They will be analysed ascendingly in the following order:
dbl < dbls
sel < indx
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
dbl(
gen_0':s3_0(
n6_0)) →
gen_0':s3_0(
*(
2,
n6_0)), rt ∈ Ω(1 + n6
0)
Induction Base:
dbl(gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
dbl(gen_0':s3_0(+(n6_0, 1))) →RΩ(1)
s(s(dbl(gen_0':s3_0(n6_0)))) →IH
s(s(gen_0':s3_0(*(2, c7_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
Types:
dbl :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sel :: 0':s → nil:cons → 0':s
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
dbls, sel, indx, from
They will be analysed ascendingly in the following order:
sel < indx
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
dbls(
gen_nil:cons4_0(
n254_0)) →
gen_nil:cons4_0(
n254_0), rt ∈ Ω(1 + n254
0)
Induction Base:
dbls(gen_nil:cons4_0(0)) →RΩ(1)
nil
Induction Step:
dbls(gen_nil:cons4_0(+(n254_0, 1))) →RΩ(1)
cons(dbl(0'), dbls(gen_nil:cons4_0(n254_0))) →LΩ(1)
cons(gen_0':s3_0(*(2, 0)), dbls(gen_nil:cons4_0(n254_0))) →IH
cons(gen_0':s3_0(0), gen_nil:cons4_0(c255_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
Types:
dbl :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sel :: 0':s → nil:cons → 0':s
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n254_0)) → gen_nil:cons4_0(n254_0), rt ∈ Ω(1 + n2540)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
sel, indx, from
They will be analysed ascendingly in the following order:
sel < indx
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sel(
gen_0':s3_0(
n540_0),
gen_nil:cons4_0(
+(
1,
n540_0))) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n540
0)
Induction Base:
sel(gen_0':s3_0(0), gen_nil:cons4_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
sel(gen_0':s3_0(+(n540_0, 1)), gen_nil:cons4_0(+(1, +(n540_0, 1)))) →RΩ(1)
sel(gen_0':s3_0(n540_0), gen_nil:cons4_0(+(1, n540_0))) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
Types:
dbl :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sel :: 0':s → nil:cons → 0':s
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n254_0)) → gen_nil:cons4_0(n254_0), rt ∈ Ω(1 + n2540)
sel(gen_0':s3_0(n540_0), gen_nil:cons4_0(+(1, n540_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n5400)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
indx, from
(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
indx(
gen_nil:cons4_0(
n856_0),
gen_nil:cons4_0(
1)) →
gen_nil:cons4_0(
n856_0), rt ∈ Ω(1 + n856
0)
Induction Base:
indx(gen_nil:cons4_0(0), gen_nil:cons4_0(1)) →RΩ(1)
nil
Induction Step:
indx(gen_nil:cons4_0(+(n856_0, 1)), gen_nil:cons4_0(1)) →RΩ(1)
cons(sel(0', gen_nil:cons4_0(1)), indx(gen_nil:cons4_0(n856_0), gen_nil:cons4_0(1))) →LΩ(1)
cons(gen_0':s3_0(0), indx(gen_nil:cons4_0(n856_0), gen_nil:cons4_0(1))) →IH
cons(gen_0':s3_0(0), gen_nil:cons4_0(c857_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(17) Complex Obligation (BEST)
(18) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
Types:
dbl :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sel :: 0':s → nil:cons → 0':s
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n254_0)) → gen_nil:cons4_0(n254_0), rt ∈ Ω(1 + n2540)
sel(gen_0':s3_0(n540_0), gen_nil:cons4_0(+(1, n540_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n5400)
indx(gen_nil:cons4_0(n856_0), gen_nil:cons4_0(1)) → gen_nil:cons4_0(n856_0), rt ∈ Ω(1 + n8560)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
from
(19) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol from.
(20) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
Types:
dbl :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sel :: 0':s → nil:cons → 0':s
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n254_0)) → gen_nil:cons4_0(n254_0), rt ∈ Ω(1 + n2540)
sel(gen_0':s3_0(n540_0), gen_nil:cons4_0(+(1, n540_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n5400)
indx(gen_nil:cons4_0(n856_0), gen_nil:cons4_0(1)) → gen_nil:cons4_0(n856_0), rt ∈ Ω(1 + n8560)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
(22) BOUNDS(n^1, INF)
(23) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
Types:
dbl :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sel :: 0':s → nil:cons → 0':s
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n254_0)) → gen_nil:cons4_0(n254_0), rt ∈ Ω(1 + n2540)
sel(gen_0':s3_0(n540_0), gen_nil:cons4_0(+(1, n540_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n5400)
indx(gen_nil:cons4_0(n856_0), gen_nil:cons4_0(1)) → gen_nil:cons4_0(n856_0), rt ∈ Ω(1 + n8560)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
(25) BOUNDS(n^1, INF)
(26) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
Types:
dbl :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sel :: 0':s → nil:cons → 0':s
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n254_0)) → gen_nil:cons4_0(n254_0), rt ∈ Ω(1 + n2540)
sel(gen_0':s3_0(n540_0), gen_nil:cons4_0(+(1, n540_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n5400)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
(28) BOUNDS(n^1, INF)
(29) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
Types:
dbl :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sel :: 0':s → nil:cons → 0':s
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n254_0)) → gen_nil:cons4_0(n254_0), rt ∈ Ω(1 + n2540)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(30) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
(31) BOUNDS(n^1, INF)
(32) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
Types:
dbl :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s → nil:cons → nil:cons
sel :: 0':s → nil:cons → 0':s
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s → nil:cons
hole_0':s1_0 :: 0':s
hole_nil:cons2_0 :: nil:cons
gen_0':s3_0 :: Nat → 0':s
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(33) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
dbl(gen_0':s3_0(n6_0)) → gen_0':s3_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
(34) BOUNDS(n^1, INF)